小站备考
托福
托福阅读
Official35阅读真题

OFFICIAL35 According to paragraph 2, one reason temperature is not likely to be the sole cause of seasonal succession in phytoplankton is

展开
Seasonal Succession In Phytoplankton
Tip:单击查看句义;划选/双击查生词
Phytoplankton are minute, free-floating aquatic plants. In addition to the marked changes in abundance observed in phytoplankton over the course of a year, there is also a marked change in species composition.  This change in the dominant species from season to season is called seasonal succession, and it occurs in a wide variety of locations.  Under seasonal succession, one or more species dominate the phytoplankton for a shorter or longer period of time and then are replaced by another set of species.  This pattern is repeated yearly.  This succession is different from typical terrestrial ecological succession in which various plants replace one another until finally a so-called climax community develops, which persists for many years.

What are the factors causing this phenomenon? Considering that seasonal succession is most often and clearly seen in temperate seas, which have a marked change in temperature during a year, temperature has been suggested as a cause. This may be one of the factors, but it is unlikely to be the sole cause because there are species that become dominant species at various temperatures. Furthermore, temperature changes rather slowly in seawater, and the replacement of dominant species often is much more rapid.

Another suggested reason is the change in nutrient level over the year, with differing concentrations favoring different phytoplanklon species. While this factor may also contribute, observations suggest that phytoplankton populations rise and fall much more quickly than nutrient concentrations change.

Yet another explanation is that species succession is a consequence of changes in seawater brought about by the phytoplankton living in it. Each species of phytoplankton secretes or excretes organic molecules into the seawater. These metabolites can have an effect on the organisms living in the seawater, either inhibiting or promoting their growth. For any individual organism, the amount of metabolite secreted is small. But the effect of secretions by all the individuals of the dominant species can be significant both for themselves and for other species.

These organic metabolites could, and probably do, include a number of different classes of organic compounds. Some are likely toxins, such as those released by the dinoflagellates (a species of plankton) during red tides, which inhibit growth of other photosynthetic organisms. In such cases, the population explosion of dinoflagellates is so great that the water becomes brownish red in color from the billions of dinoflagellate cells. Although each cell secretes a minute amount of toxin, the massive dinoflagellate numbers cause the toxin to reach concentrations that kill many creatures. This toxin can be concentrated in such filter-feeding organisms as clams and mussels, rendering them toxic to humans.

Another class of metabolite is the vitamins. It is now known that certain phytoplankton species have requirements for certain vitamins, and that there are considerable differences among species as to requirements. The B vitamins, especially vitamin B12, thiamine and biotin, seem to be the most generally required Some species may be unable to thrive until a particular vitamin, or group of vitamins, is present in the water. These vitamins are produced only by another species: hence, a succession of species could occur whereby first the vitamin-producing species is present and then the vitamin-requiring species follows.

Other organic compounds that may inhibit or promote various species include amino acids, carbohydrates, and fatty acids. Although it is suspected that these organic metabolites may have an important role in species succession and it has been demonstrated in the laboratory that phytoplankton species vary both in their ability to produce necessary vitamins and in their requirements for such in order to grow, evidence is still inadequate as to their real role in the sea.

There is also evidence to suggest that grazers (animals that feed on plants or stationary animals), particularly selective grazers, can influence the phytoplankton species composition. Many copepods (small, herbivorous crustaceans) and invertebrate larvae pick out selected phytoplankton species from mixed groups, changing the species composition.

A growing body of evidence now suggests that all of the factors considered here are operating simultaneously to produce species succession. The importance of any factor will vary with the particular phytoplankton species and the environmental conditions.

2.According to paragraph 2, one reason temperature is not likely to be the sole cause of seasonal succession in phytoplankton is

你的答案:
正确答案:D

名师1对1,深度分析薄弱项,高效提分

去咨询
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
本题根据关键词the sole cause定位到这一句话:This may be one of the factors, but it is unlikely to be the sole cause because there are species that become dominant species at various temperatures. because后面就是原因:在不同的温度下都会有物种成为优势物种。意思与选项D契合。选项A说海水温度变化太频繁,选项B说季节性的更替只在温和的海里进行,选项C说优势物种的更替速率比温度变化的速率快,这三个都是无中生有。选择D。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈