小站备考
托福
托福阅读
Official5阅读真题

OFFICIAL5 Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Plants need to absorb certain minerals from the soil in adequate quantities for normal growth and develop

展开
Minerals and Plants
Tip:单击查看句义;划选/双击查生词
Research has shown that certain minerals are required by plants for normal growth and development. The soil is the source of these minerals, which are absorbed by the plant with the water from the soil. Even nitrogen, which is a gas in its elemental state, is normally absorbed from the soil as nitrate ions. Some soils are notoriously deficient in micro nutrients and are therefore unable to support most plant life. So-called serpentine soils, for example, are deficient in calcium, and only plants able to tolerate low levels of this mineral can survive. In modern agriculture, mineral depletion of soils is a major concern, since harvesting crops interrupts the recycling of nutrients back to the soil.

Mineral deficiencies can often be detected by specific symptoms such as chlorosis (loss of chlorophyll resulting in yellow or white leaf tissue), necrosis (isolated dead patches), anthocyanin formation (development of deep red pigmentation of leaves or stem), stunted growth, and development of woody tissue in an herbaceous plant. Soils are most commonly deficient in nitrogen and phosphorus. Nitrogen-deficient plants exhibit many of the symptoms just described. Leaves develop chlorosis; stems are short and slender, and anthocyanin discoloration occurs on stems, petioles, and lower leaf surfaces. Phosphorus-deficient plants are often stunted, with leaves turning a characteristic dark green, often with the accumulation of anthocyanin. Typically, older leaves are affected first as the phosphorus is mobilized to young growing tissue. Iron deficiency is characterized by chlorosis between veins in young leaves.

Much of the research on nutrient deficiencies is based on growing plants hydroponically, that is, in soilless liquid nutrient solutions. This technique allows researchers to create solutions that selectively omit certain nutrients and then observe the resulting effects on the plants. Hydroponics has applications beyond basic research, since it facilitates the growing of greenhouse vegetables during winter. Aeroponics, a technique in which plants are suspended and the roots misted with a nutrient solution, is another method for growing plants without soil.

While mineral deficiencies can limit the growth of plants, an overabundance of certain minerals can be toxic and can also limit growth. Saline soils, which have high concentrations of sodium chloride and other salts, limit plant growth, and research continues to focus on developing salt-tolerant varieties of agricultural crops. Research has focused on the toxic effects of heavy metals such as lead, cadmium, mercury, and aluminum; however, even copper and zinc, which are essential elements, can become toxic in high concentrations. Although most plants cannot survive in these soils, certain plants have the ability to tolerate high levels of these minerals.

Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. Hyperaccumulators run the entire range of the plant world. They may be herbs, shrubs, or trees. Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.

Only recently have investigators considered using these plants to clean up soil and waste sites that have been contaminated by toxic levels of heavy metals–an environmentally friendly approach known as phytoremediation. This scenario begins with the planting of hyperaccumulating species in the target area, such as an abandoned mine or an irrigation pond contaminated by runoff. Toxic minerals would first be absorbed by roots but later relocated to the stem and leaves. A harvest of the shoots would remove the toxic compounds off site to be burned or composted to recover the metal for industrial uses. After several years of cultivation and harvest, the site would be restored at a cost much lower than the price of excavation and reburial, the standard practice for remediation of contaminated soils. For examples, in field trials, the plant alpine pennycress removed zinc and cadmium from soils near a zinc smelter, and Indian mustard, native to Pakistan and India, has been effective in reducing levels of selenium salts by 50 percent in contaminated soils.

14.Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Plants need to absorb certain minerals from the soil in adequate quantities for normal growth and develop

A.Some plants are able to accumulate extremely high levels of certain minerals and thus can be used to clean up soils contaminated with toxic levels of these minerals.

B.Though beneficial in lower levels, high levels of salts, other minerals, and heavy metals can be harmful to plants.

C.When plants do not absorb sufficient amounts of essential minerals, characteristic abnormalities result.

D.Because high concentrations of sodium chloride and other salts limit growth in most plants, much research has been done in an effort to develop salt-tolerant agricultural crops.

E.Some plants can tolerate comparatively low levels of certain minerals, but such plants are of little use for recycling nutrients back into depleted soils.

F.Mineral deficiencies in many plants can be cured by misting their roots with a nutrient solution or by transferring the plants to a soilless nutrient solution.

你的答案:
正确答案:ABC
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
A.B.C 从文章题目可以大致推测可能会有几种方向。物质对植物的重要性几个方面的描述/为什么特别重要解释/缺乏物质或过多的解决方法。 首段大致说的是物质对植物的重要性。 二段描述物质缺乏的症状。 三段补充介绍二段所说物质缺乏的研究方法:控制变量 四段说物质过多对植物的危害。 五段特定植物能用来吸收物质,实际说的是问题的可能解决方案。 末段说的是五段解决方案的具体操作,最新进展。 引出句概括的是首段内容。正确选项应概括后段内容。 A(some plants are)选项对应原文第五段和末段,正确。 B(though)选项对应原文第四段,正确。 C(when)选项对应原文第二段,正确。 D(because)选项中的因果关系原文没说,而且氯化钠也是个细节,不选。 E(some plants can)选项没说,不选。 F(mineral deficiency)选项是原文第三段末的一个细节,不选。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈