小站备考
托福
托福阅读
模拟测试卷5-2019-8月新卷阅读

模拟测试卷5-2019-8月新卷 Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Drag your choices to the spaces where they belong. To review the passage, click on View Text. Evolutionary and steady-state theories have been proposed to explain the large-scale structure of the universe.

展开
The Cosmological Principle
Tip:单击查看句义;划选/双击查生词
Cosmologists attempt to understand the origin and structure of the universe as a whole. They begin their search with an assumption about the nature of the universe—namely, that in looking out from our vantage point in the cosmos, we see essentially the same kind of universe that an observer stationed in any other part of it, no matter how remote, would see. As far as our telescopes can reach, we see galaxies and clusters of galaxies distributed in more or less the same way in every direction. This assumption that the universe is uniform on a large scale is called “the cosmological principle.”

One thing that is certain is that the universe is expanding. In every direction we look, distant galaxies are moving away from each other. Until the 1960s, the expansion of the universe was the primary fact of cosmological significance that cosmological theories had to accommodate. There were two general classes of cosmological theories that fit with the expanding universe: the evolutionary (Big Bang) theory and the steady-state theory.

The essential idea of the evolutionary cosmology is that there was a beginning—a moment of creation at which the universe came into existence in a hot, violent explosion—the Big Bang. In the beginning, the universe was very hot, very dense, and very tiny. As the explosion evolved, the temperature dropped, the distribution of matter and energy thinned, and the universe expanded. From the current observed rate of expansion, we conclude that the creation event occurred between ten and twenty billion years ago.

The steady-state theory is based on an idea called the “perfect cosmological principle.” It is “perfect” in that it maintains that the universe is uniform not only in space but in time. Thus it is the hypothesis that the large-scale universe has always been the way it is now and will be this way forever in the future. This view is consistent with philosophical approaches that reject the notion of an absolute beginning of the universe as unacceptable. The steady-state universe would have no beginning and no end.

In an expanding universe, the galaxies move away from each other, spreading matter more thinly over space. On the other hand, the perfect cosmological principle requires that the density of matter in the universe remain constant over time. To make the steady-state theory compatible with the expanding universe, its proponents introduced the notion of continuous creation. As the universe expands and the galaxies move farther apart, new matter—in the form of hydrogen—is introduced into the universe. The rate at which the hypothesized new matter is created is far too small for this creation to be detected with available instruments, but continuous creation provides just enough matter to form new stars and galaxies that fill in the space left by the old ones. Thus in the steady-state universe there is evolution of stars and galaxies, but the general character and the overall density of the universe remains unchanged over time. In this special sense, the steady-state universe itself does not evolve.

Both of these views—steady-state and Bing Bang—allow for cosmic expansion. However, the discovery in the 1960s of a comparatively small star-like objects called quasars tipped the scales in favor of the Big Bang cosmology. Astronomers determined that almost all quasars are very distant. Given how bright quasars appear even at such great distances, astronomers concluded that quasars typically have an output of light that is 1,000 times greater than that of a whole spiral galaxy composed of billions of stars.

Quasars are such distant objects that the light now reaching us from quasars left them billions of years ago. This means that when we observe quasars today we are seeing that state of the universe billions of years ago. Thus the fact that almost all quasars are very far away implies that earlier in the history of the universe quasars were developing more frequently than they are now. This evolution is consistent with the Big Bang theory. But it violates the perfect cosmological principle, and so it is inconsistent with the steady-state view.

10.Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.
Drag your choices to the spaces where they belong. To review the passage, click on View Text. Evolutionary and steady-state theories have been proposed to explain the large-scale structure of the universe.

A.The Big Bang theory maintains that the continuous creation of matter is the explanation   for   why   the   universe is expanding at a constant rate.

B.While the steady-state cosmology rejects the belief that the universe has an end, it accepts the possibility that the universe had a beginning.

C.The distribution of quasars suggests that the large-scale structure of the universe has changed over time and thus makes the evolutionary theory more plausible than the steady-state theory.

D.The evolutionary theory maintains that the universe had a beginning with a high density explosion and has been expanding to yield a less dense distribution of matter ever since.

E.The steady-state theory maintains that the expanding universe has existed forever, with new matter being continuously created to keep the large-scale density of matter the same as we observe it today.

F.The extreme brightness of quasars is proof of an explosion that marked the beginning of the universe as hypothesized by the evolutionary cosmology.

你的答案:
正确答案:CDE
题目解析:
 后才能查看题目解析,还没有账号? 马上注册

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈