小站备考
托福
托福听力
Official42听力真题

OFFICIAL42 What do adsorption and absorption in fungi have in common?

展开
Tip:单击查看句义;划选/双击查生词

[00:00.00]NARRATOR: Listen to part of a lecture in an environmental science class.
[00:05.74]FEMALE PROFESSOR: When you try to imagine a fungus, you probably picture a mushroom popping up out of the ground…[00:11.43]and think that’s it. [00:13.08]But a fungus like that… most of it actually lives underground.
[00:17.68]And fungi in general are often an important active component of the soil. [00:22.32]A fungus secretes enzymes into the soil, enzymes that break down …decompose organic material in the soil… [00:30.05]so the fungus can absorb this material and get nutrition.
[00:33.65]But to me what’s most interesting about this process is how it may enable fungi to help clean up environmental pollution in the soil…[00:42.01]And that's thanks in part to a substance in their cell walls called chitin.
[00:47.44]Now a lot of people think fungi are related to plants, but they're not. [00:52.09]Believe it or not, the only other place chitin is found in abundance is in the exoskeletons of insects, crabs, and such! [01:00.13]So, in this sense, fungi are more associated with insects than with any plant. [01:05.10]Strange, huh?
[01:06.44]And the chitin in the cell walls of a filamentous fungus…A filament, of course, is a long, threadlike structure—cells joined end to end. [01:16.23]Filamentous fungi grow in soil and in decaying vegetation, [01:20.57]and, as their name implies, they exist as filaments. [01:24.02]And, although regarded as microorganisms, filaments from a single fungus can fan out to occupy many square meters or even several square kilometers of forest floor. [01:35.16]Their vast surface area allows them to break down and take in huge amounts of nutrients. But beyond that, the filiments also pull out of the soil a great deal of the pollution that might be in there, especially heavy metals.
[01:50.40]And here's where chitin comes in. Like some other substances in fungal cell walls, chitin forms strong chemical bonds to heavy metals in the environment…in a process we call adsorption.
[02:04.05]Now don't confuse this with absorption, where a substance is absorbed into a cell, into the interior of a cell. [02:11.70]I mean that's happening here too, [02:13.64]but adsorption means binding to the outer surface of the cell. [02:17.89]And a filamentous fungus can adsorb toxic heavy metals…bind them to the surface of its enormous network of filaments—and thereby detoxify a large soil ecosystem. [02:29.74]The heavy metals are still there, but instead of leaching into the water system and contaminating the water underground, large amounts of these metals may remain bound to the chitin…to the cell walls of filamentous fungi in the soil…and thus remain chemically inactive for as long as thirty years—perhaps longer.
[02:48.53]In fact, we can actually use the cell walls of filamentous fungi as a filter, even after the fungi are dead.
[02:57.00]For example, the pharmaceutical industry grows filamentous fungi in large quantities in the lab. Like, to produce the antibiotic penicillin, the drug company grows the fungus Penicillium. And after the penicillin is extracted, these dead Penicillium filaments…we can use the chitin in their cell walls to make industrial filters to adsorb heavy metals. [03:20.56]We can put these filters into waste pipes from industrial processes and use the filters to trap heavy metals, like mercury and zinc. [03:28.72]Later, we can chemically extract the heavy metals and reuse the filter over and over.
[03:34.01]Now, going back to the absorption of toxic metals into the body of the fungus, let's turn our attention to mushrooms.
[03:41.64]Like other fungi, mushrooms can absorb large quantities of heavy metals. [03:46.42]In fact, they may contain up to two-and-a-half times the concentration of toxic metals found in the soil they grow in. [03:54.00]So mushrooms, at least what we see above ground…we can potentially harvest them and then, once and for all, safely dispose of the pollutants contained within them.
[04:04.21]In fact, to clean up…especially the groundwater system…permanently, harvesting mushrooms is probably the best way to go. [04:12.41]For some reason, this hasn't happened yet, as far as I know. But I can easily envision cultivating mushrooms for the sole purpose of detoxifying a large underground ecosystem.

4.What do adsorption and absorption in fungi have in common?

你的答案:
正确答案:C

名师1对1,深度分析薄弱项,高效提分

去咨询
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
原文出处:Professor:Now, don't confuse this with absorption, where a substance is absorbed into a cell, into the interior of a cell. Professor:I mean, that is happening here too. Professor:But adsorption means binding to the outer surface of the cell. Professor:And a filamentous fungus can adsorb toxic heavy metals, bind them to the surface of its enormous network of filaments, and thereby detoxify a large soil ecosystem. 解析:可知菌类的吸附和吸收作用都可避免污染物污染地下水。所以C选项正确。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈