小站备考
托福
托福阅读
Official41阅读真题

OFFICIAL41 The passage supports the idea that the basic reason that Venus and Earth are now so different from each other is that

展开
Climate Of Venus
Tip:单击查看句义;划选/双击查生词
Earth has abundant water in its oceans but very little carbon dioxide in its relatively thin atmosphere. By contrast, Venus is very dry and its thick atmosphere is mostly carbon dioxide. The original atmospheres of both Venus and Earth were derived at least in part from gases spewed forth, or outgassed, by volcanoes. The gases that emanate from present-day volcanoes on Earth, such as Mount Saint Helens, are predominantly water vapor, carbon dioxide, and sulfur dioxide. These gases should therefore have been important parts of the original atmospheres of both Venus and Earth. Much of the water on both planets is also thought to have come from impacts from comets, icy bodies formed in the outer solar system.

In fact, water probably once dominated the Venusian atmosphere. Venus and Earth are similar in size and mass, so Venusian volcanoes may well have outgassed as much water vapor as on Earth, and both planets would have had about the same number of comets strike their surfaces. Studies of how stars evolve suggest that the early Sun was only about 70 percent as luminous as it is now, so the temperature in Venus’ early atmosphere must have been quite a bit lower. Thus water vapor would have been able to liquefy and form oceans on Venus. But if water vapor and carbon dioxide were once so common in the atmospheres of both Earth and Venus, what became of Earth’s carbon dioxide? And what happened to the water on Venus?

The answer to the first question is that carbon dioxide is still found in abundance on Earth, but now, instead of being in the form of atmospheric carbon dioxide, it is either dissolved in the oceans or chemically bound into carbonate rocks, such as the limestone and marble that formed in the oceans. If Earth became as hot as Venus, much of its carbon dioxide would be boiled out of the oceans and baked out of the crust. Our planet would soon develop a thick, oppressive carbon dioxide atmosphere much like that of Venus.

To answer the question about Venus’ lack of water, we must return to the early history of the planet. Just as on present-day Earth, the oceans of Venus limited the amount of atmospheric carbon dioxide by dissolving it in the oceans and binding it up in carbonate rocks. But being closer to the Sun than Earth is, enough of the liquid water on Venus would have vaporized to create a thick cover of water vapor clouds. Since water vapor is a greenhouse gas, this humid atmosphere—perhaps denser than Earth’s present-day atmosphere, but far less dense than the atmosphere that envelops Venus today—would have efficiently trapped heat from the Sun. At first, this would have had little effect on the oceans of Venus. Although the temperature would have climbed above 100° C, the boiling point of water at sea level on Earth, the added atmospheric pressure from water vapor would have kept the water in Venus' oceans in the liquid state.

This hot and humid state of affairs may have persisted for several hundred million years. But as the Sun’s energy output slowly increased over time, the temperature at the surface would eventually have risen above 374°C. Above this temperature, no matter what the atmospheric pressure, Venus’ oceans would have begun to evaporate, and the added water vapor in the atmosphere would have increased the greenhouse effect. This would have made the temperature even higher and caused the oceans to evaporate faster, producing more water vapor. That, in turn, would have further intensified the greenhouse effect and made the temperature climb higher still.

Once Venus’ oceans disappeared, so did the mechanism for removing carbon dioxide from the atmosphere. With no oceans to dissolve it, outgassed carbon dioxide began to accumulate in the atmosphere, intensifying the greenhouse effect even more. Temperatures eventually became high enough to "bake out" any carbon dioxide that was trapped in carbonate rocks. This liberated carbon dioxide formed the thick atmosphere of present-day Venus. Over time, the rising temperatures would have leveled off, solar ultraviolet radiation having broken down atmospheric water vapor molecules into hydrogen and oxygen. With all the water vapor gone, the greenhouse effect would no longer have accelerated.

11.The passage supports the idea that the basic reason that Venus and Earth are now so different from each other is that

你的答案:
正确答案:D
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
【题目翻译】这篇文章支持这样的观点:金星和地球现在如此不同的基本原因是 A:早期的金星比早期的地球有更频繁的火山喷发。 B:早期的金星比早期的地球有更少的液态水。 C:火山活动在金星上停止得比较早,但在地球上继续。 D:金星比地球更接近太阳 【判定题型】:题目问的是文章中的具体细节信息,故根据题目问法可以判断本题为事实信息题。 【关键词定位】:根据关键词“different from each other”,定位到Passage 4,原句为“But being closer to the Sun than Earth is, enough of the liquid water on Venus would have vaporized to create a thick cover of water vapor clouds.”,意思是“但是由于离太阳比地球更近,金星上足够多的液态水会蒸发,形成一层厚厚的水蒸气云。”。 【逻辑分析】可知,由于金星比太阳离地球更近,金星上足够的液体会蒸发形成一层很厚的水蒸气云。这就是金星和地球本质上的区别。 【选项分析】 A.文章未提及,故错误。 B.文章未提及,故错误。 C.文章未提及,故错误。 D.原文中But being closer to the Sun than Earth is对应D选项的Venus is closer to the Sun than Earth is, 所以选择D选项。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈