小站备考
托福
托福阅读
Official3阅读真题

托福official3阅读第2篇Depletion of the Ogallala Aquifer题目解析

展开
Depletion of the Ogallala Aquifer
Tip:单击查看句义;划选/双击查生词
The vast grasslands of the High Plains in the central United States were settled by farmers and ranchers in the 1880s. This region has a semiarid climate, and for 50 years after its settlement, it supported a low-intensity agricultural economy of cattle ranching and wheat farming. In the early twentieth century, however, it was discovered that much of the High Plains was underlain by a huge aquifer (a rock layer containing large quantities of groundwater). This aquifer was named the Ogallala aquifer after the Ogallala Sioux Indians, who once inhabited the region

The Ogallala aquifer is a sandstone formation that underlies some 583,000 square kilometers of land extending from northwestern Texas to southern South Dakota. Water from rains and melting snows has been accumulating in the Ogallala for the past 30,000 years. Estimates indicate that the aquifer contains enough water to fill Lake Huron, but unfortunately, under the semiarid climatic conditions that presently exist in the region, rates of addition to the aquifer are minimal, amounting to about half a centimeter a year.

The first wells were drilled into the Ogallala during the drought years of the early 1930s. The ensuing rapid expansion of irrigation agriculture, especially from the 1950s onward, transformed the economy of the region. More than 100,000 wells now tap the Ogallala. Modern irrigation devices, each capable of spraying 4.5 million liters of water a day, have produced a landscape dominated by geometric patterns of circular green islands of crops. Ogallala water has enabled the High Plains region to supply significant amounts of the cotton, sorghum, wheat, and corn grown in the United States. In addition, 40 percent of American grain-fed beef cattle are fattened here.

This unprecedented development of a finite groundwater resource with an almost negligible natural recharge rate—that is, virtually no natural water source to replenish the water supply—has caused water tables in the region to fall drastically. In the 1930s, wells encountered plentiful water at a depth of about 15 meters; currently, they must be dug to depths of 45 to 60 meters or more. In places, the water table is declining at a rate of a meter a year, necessitating the periodic deepening of wells and the use of ever-more-powerful pumps. It is estimated that at current withdrawal rates, much of the aquifer will run dry within 40 years. The situation is most critical in Texas, where the climate is driest, the greatest amount of water is being pumped, and the aquifer contains the least water. It is projected that the remaining Ogallala water will, by the year 2030, support only 35 to 40 percent of the irrigated acreage in Texas that is supported in 1980.



The reaction of farmers to the inevitable depletion of the Ogallala varies.
Many have been attempting to conserve water by irrigating less frequently or by switching to crops that require less water. Others, however, have adopted the philosophy that it is best to use the water while it is still economically profitable to do so and to concentrate on high-value crops such as cotton.   The incentive of the farmers who wish to conserve water is reduced by their knowledge that many of their neighbors are profiting by using great amounts of water, and in the process are drawing down the entire region’s water supplies.



In the face of the upcoming water supply crisis, a number of grandiose schemes have been developed to transport vast quantities of water by canal or pipeline from the Mississippi, the Missouri, or the Arkansas rivers. Unfortunately, the cost of water obtained through any of these schemes would increase pumping costs at least tenfold, making the cost of irrigated agricultural products from the region uncompetitive on the national and international markets.Somewhat more promising have been recent experiments for releasing capillary water (water in the soil) above the water table by injecting compressed air into the ground.Even if this process proves successful, however, it would almost triple water costs. Genetic engineering also may provide a partial solution, as new strains of drought-resistant crops continue to be developed. Whatever the final answer to the water crisis may be, it is evident that within the High Plains, irrigation water will never again be the abundant, inexpensive resource it was during the agricultural boom years of the mid-twentieth century.

1.According to paragraph 1, which of the following statements about the High Plains is true?

你的答案:
正确答案:D

名师1对1,深度分析薄弱项,高效提分

去咨询
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
排除法,以1880s做关键词定位至第一句,说1880s农牧民定居在High Plains,没说1880前没有人,A错:The vast grasslands of the High Plains in the central United States were settled by farmers and ranchers in the 1880s.以climate做关键词定位至第二句,原文说semiarid,没说温度,B错;D中small amount of farming and ranching和原文第二句中的low-intensity是同义替换,选。This region has a semiarid climate, and for 50 years after its settlement, it supported a low-intensity agricultural economy of cattle ranching and wheat farming.以人名做关键词定位至最后一句,说这个人是inhibit在这儿的,没说是他发现的,C错:This aquifer was named the Ogallala aquifer after the Ogallala Sioux Indians, who once inhabited the region.

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈